
Sorting Algorithms (I)
2023

Problem Set and Solutions

The Centre for Education in Mathematics and Computing
Faculty of Mathematics, University of Waterloo

www.cemc.uwaterloo.ca

� � � � �



Selection Sort: Problem Set

1. Sort the following list of letters in alphabetical order using
selection sort: D E A C F B

Solution

D E A C F B

A E D C F B

A B D C F E

A B C D F E

A B C D F E

A B C D E F



Selection Sort: Problem Set

2. If the unsorted list contains n elements, how many swaps does
the algorithm make?

Solution

Every element (except the last) is swapped (possibly
with itself). Therefore, the algorithm makes n− 1
swaps.



Selection Sort: Problem Set

3. How many comparisons does the algorithm make? That is,
how many times does it need to compare two elements?

Solution

In the first pass it has to find the minimum of n elements. This
takes n− 1 comparisons. In the second pass it has to find the
minimum of n− 1 elements which takes n− 2 comparisons. In
the final pass it has to find the minimum of 2 elements which
takes 1 comparison. Therefore:

(n− 1) + (n− 2) + (n− 3) + . . .+ 1 =
n(n− 1)

2



Selection Sort: Problem Set

4. How does the algorithm perform on data that is already
sorted? How does it perform on data that is sorted in reverse?

Solution

It performs exactly the same all the time, regardless of
the data’s composition. Being already (or almost)
sorted provides no advantage.



Insertion Sort: Problem Set

1. Sort the following list of letters in alphabetical order using
insertion sort: E B A F C D

Solution

E B A F C D

B E A F C D

A B E F C D

A B E F C D

A B C E F D

A B C D E F



Insertion Sort: Problem Set

2. If the unsorted list contains n elements, how many elements
need to be shifted?

Solution

Every element (except the first) is shifted (possibly in
place). Therefore, n− 1 elements need to be shifted.



Insertion Sort: Problem Set

3. How many comparisons does the algorithm make? That is,
how many times does it need to compare two elements?

Solution

The first element shifted is compared with 1 other element. The
second element shifted is compared with at least 1 and at most 2
elements. The n− 1(th) element shifted is compared with at
least 1 and at most n− 1 elements. Therefore:

At least 1 + 1 + 1 + . . . = n− 1 and

At most 1 + 2 + 3 + . . .+ (n− 1) =
n(n− 1)

2



Insertion Sort: Problem Set

4. How does the algorithm perform on data that is already
sorted? How does it perform on data that is sorted in reverse?

Solution

On data that is already sorted the algorithm will make
the minimum number of comparisons. On data that is
sorted in reverse the algorithm will make the maximum
number of comparisons. Being already (or almost)
sorted provides a significant advantage.



Bubble Sort: Problem Set

1. Sort the following list of letters in alphabetical order using
bubble sort: B D F C A E

Solution

B D F C A E

B D C A E F

B C A D E F

B A C D E F

A B C D E F

A B C D E F



Bubble Sort: Problem Set

2. If the unsorted list contains n elements, how many passes
does the algorithm make?

Solution

Every element (except the smallest) needs to be
bubbled. Therefore, the algorithm makes n− 1 passes.



Bubble Sort: Problem Set

3. How many comparisons does the algorithm make?

Solution

The first pass makes n− 1 comparisons. The second
pass makes n− 2 comparisons. The final pass makes 1
comparison. Therefore:

(n− 1) + (n− 2) + (n− 3) + . . .+ 1 =
n(n− 1)

2



Bubble Sort: Problem Set

4. How many swaps does the algorithm make?

Solution

If the data is already sorted, then no comparison will
result in a swap. If the data is sorted in reverse, then
every comparison will result in a swap. Therefore:

Between 0 and
n(n− 1)

2



Bubble Sort: Problem Set

5. How can the algorithm be improved so that already sorted or
nearly sorted data has more of an advantage?

Solution

One possibility is to count the number of swaps made
within a pass. If a pass results in 0 swaps, halt the
algorithm early.



Challenge: Problem Set

1. If your data consists of only integers, Radix Sort is another
viable sorting algorithm. Study the example below and explain
how the Radix Sort algorithm works.

170 045 075 090 802 024 002 066

170 090 802 002 024 045 075 066

802 002 024 045 066 170 075 090

002 024 045 066 075 090 170 802

Hint: Consider the individual digits of each element.



Challenge: Problem Set

Solution

Radix Sort sorts by digits. During the first pass the elements are sorted
by least significant digit (the 1s). During the second pass the elements
are sorted by the 10s digit. During the third pass the elements are
sorted by the 100s digit. The final pass will sort the elements by most
significant digit, and perhaps surprisingly, will result in the entire set of
data being sorted in ascending order.

For this algorithm to work correctly, it is very important that in the

event of a tie, elements maintain their relative positioning.



Challenge: Problem Set

2. Here is an algorithm to sort four animals from lightest to
heaviest:

• Randomly pick two animals and compare their weights.
• Compare the weights of the other two animals.
• Compare the weights of the heaviest animal from each pair.

(The “heavies”)
• Compare the weights of the lightest animal from each pair.

(The “lights”)
• Arrange the animals as follows: lightest of the “lights”,

heaviest of the “lights”, lightest of the “heavies”, and heaviest
of the “heavies”.

Unfortunately this algorithm will sometimes fail. When?
What is the probability that this algorithm will succeed?



Challenge: Problem Set

Solution

Suppose you start by comparing the two heaviest animals. One of them
will end up getting grouped with the “lights” when it is actually the
lightest of the “heavies”. Similarly, suppose you start by comparing the
two lightest animals. One of them will end up getting grouped with the
“heavies” when it is actually the heaviest of the “lights”.

So, out of the 6 different ways to pick the first pair of animals to

compare, 2 ways will fail. This means that 4
6
or 2

3
of the time the

algorithm will succeed.


